Targeting the mechanisms by which cancer cells acquire energy for metabolic needs is a therapeutic target. Discover the latest research on cancer metabolism and therapeutic targets.
Cancer treatments including angiogenesis inhibitors prevent tumor cells from receiving nutrients and oxygen. Here is the latest research on angiogenesis inhibitors for the treatment of cancer.
Biosensors are devices that are designed to detect a specific biological analyte by essentially converting a biological entity (ie, protein, DNA, RNA) into an electrical signal that can be detected and analyzed. The use of biosensors in cancer detection and monitoring holds vast potential. Biosensors can be designed to detect emerging cancer biomarkers and to determine drug effectiveness at various target sites. Biosensor technology has the potential to provide fast and accurate detection, reliable imaging of cancer cells, and monitoring of angiogenesis and cancer metastasis, and the ability to determine the effectiveness of anticancer chemotherapy agents.
Some cancers are difficult to treat and aggressive including the "triple-negative" breast cancer. This type of cancer is chemoresistant even before chemotherapy begins. Here are the latest discoveries chemo-resistance in breast cancer.
Chimeric antigen receptor (CAR) T cells are cells that are genetically engineered to recognize and target specific proteins. The ability of these cells to recognize cancer antigens and eliminate tumor cells have transformed cancer immunotherapy approaches. Here is the latest research on CAR-T cells.
A variety of different high-throughput technologies can be used to identify the complete catalog of changes that characterize the molecular profile of cohorts of tumor samples. Discover the latest insights gained from cancer 'omics' in this feed.
Nanomedicine is a promising alternative for cancer detection and therapy that utilizes nanoparticles, such as liposomes. Nanoparticles can potentially target cancer cell invasion and metastasis. Discover the latest research on Cancer Cell Invasion: Nanomedicine here.
Cancer disparities refers to differences in cancer outcomes (e.g., number of cancer cases, related health complications) across population groups.
Cancer immunotherapy is an important field of research that is looking at controlling cancer and tumor growth by activating the individuals own immune system. Recent studies have utilized chimeric antigen receptor t-cell therapy, immune checkpoint inhibitors and neoantigen vaccines. Discover the latest research on cancer immunotherapy here.
Cancer has emerged as a global concern due to its increase in incidence and mortality. Efforts are underway to evaluate and develop action plans to reduce the global burden of cancer. Currently, lung cancer, breast cancer and prostate cancer are the leading causes of cancer mortality. Here is the latest research on cancer incidence and mortality.
Cancer metabolic reprogramming is important for the rapid growth and proliferation of cancer cells. Cancer cells have the ability to change their metabolic demands depending on their environment, regulated by the activation of oncogenes or loss of tumor suppressor genes. Here is the latest research on cancer metabolic reprogramming.