Gene regulatory networks are comprised of molecular regulators that interact with each other and other factors in a cell to regulate and modulate gene expression. Here is the latest research.
Alternative splicing a regulated gene expression process that allows a single genetic sequence to code for multiple proteins. Here is that latest research.
Archaeal RNA polymerases are most similar to eukaryotic RNA polymerase II but require the support of only two archaeal general transcription factors, TBP (TATA-box binding protein) and TFB (archaeal homologue of the eukaryotic general transcription factor TFIIB) to initiate basal transcription. Here is the latest research on archaeal RNA polymerases.
Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.
CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on CRISPR-Cas applications relevant to single cell analyses. Here is the latest research.
CRISPR-Cas system enables the editing of genes to create or correct mutations. Staphylococci are associated with life-threatening infections in hospitals, as well as the community. Here is the latest research on how CRISPR-Cas system can be used for treatment of Staphylococcal infections.
Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.
CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.
CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.
CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of CRISPR-Cas system in high-throughput genome-wide screens to identify genes that may confer drug resistance.
Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.