Organoids are 3D organ-like structures that can be derived from patient tumor cells to model disease. Discover the latest research here.
Cancer treatments including angiogenesis inhibitors prevent tumor cells from receiving nutrients and oxygen. Here is the latest research on angiogenesis inhibitors for the treatment of cancer.
This feed focuses on biomimetrics, synthetic biology and bio- and tissue-engineering approaches used for modeling human diseases.
Total artificial hearts (TAH) and ventricular assist devices (VADs) provide cardiac support for patients with end-stage heart disease and have significantly improved the survival of these patients. Discover the latest research on Artificial Heart and Ventricular Assist Devices here.
Advances in biomaterial engineering have permitted the development of sophisticated drug-releasing materials with a biomimetic 3D support that allow a better control of the microenvironment of transplanted cells. Here is the latest research.
Biosensors are devices that are designed to detect a specific biological analyte by essentially converting a biological entity (ie, protein, DNA, RNA) into an electrical signal that can be detected and analyzed. The use of biosensors in cancer detection and monitoring holds vast potential. Biosensors can be designed to detect emerging cancer biomarkers and to determine drug effectiveness at various target sites. Biosensor technology has the potential to provide fast and accurate detection, reliable imaging of cancer cells, and monitoring of angiogenesis and cancer metastasis, and the ability to determine the effectiveness of anticancer chemotherapy agents.
Brain organoids are three-dimensional cell culture models derived from human pluripotent stem cells. Since they resemble the embryonic brain, they can be used to help study brain biology, early brain development, and brain diseases. Discover the latest research on brain organoids in disease modeling here.
Some cancers are difficult to treat and aggressive including the "triple-negative" breast cancer. This type of cancer is chemoresistant even before chemotherapy begins. Here are the latest discoveries chemo-resistance in breast cancer.
Chimeric antigen receptor (CAR) T cells are cells that are genetically engineered to recognize and target specific proteins. The ability of these cells to recognize cancer antigens and eliminate tumor cells have transformed cancer immunotherapy approaches. Here is the latest research on CAR-T cells.
Over 1700 different mutations in the CFTR genes have been shown to cause cystic fibrosis. Here is the latest research on structural therapy for CFTR mutants.
CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.