Feed Preview

Fast Growing

Tumour Heterogeneity

Tumour Heterogeneity diagram by Serj.hop, Wikimedia
Serj.hop, Wikimedia

Cancer cells have been found to compose many different types of cells. The heterogeneity of cancer tumors invokes a challenge when it comes to deciding on which therapeutic option(s) will be most beneficial. Discover the latest research on tumor heterogeneity here.

Top 20 most recent papers
Translational Oncology

Performance Characteristics of the BluePrint® Breast Cancer Diagnostic Test

Translational OncologyMarch 26, 2020
Lorenza MittempergherAnnuska M Glas. Electronic address: Annuska.Glas@agendia.com
Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al]

PET/MRI and genetic intrapatient heterogeneity in head and neck cancers

Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al]March 27, 2020
Kerstin ClasenDaniela Thorwarth
Translational Lung Cancer Research

Chromosomal rearrangements and their neoantigenic potential in mesothelioma

Translational Lung Cancer ResearchMarch 25, 2020
Aaron Scott MansfieldGeorge Vasmatzis
Journal of Hepatology

Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma

Journal of HepatologyMarch 17, 2020
Robert MontalJosep M Llovet
Clinical Sarcoma Research

Accurate 3-gene-signature for early diagnosis of liposarcoma progression

Clinical Sarcoma ResearchMarch 12, 2020
Anastassia SerguienkoOla Myklebost

See more papers from this feed

Related Feeds

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

Autophagy & Metabolism

Autophagy preserves the health of cells and tissues by replacing outdated and damaged cellular components with fresh ones. In starvation, it provides an internal source of nutrients for energy generation and, thus, survival. A powerful promoter of metabolic homeostasis at both the cellular and whole-animal level, autophagy prevents degenerative diseases. It does have a downside, however--cancer cells exploit it to survive in nutrient-poor tumors.

Autophagy: Cancer & Parkinson

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in cancer and Parkinson’s.

Biophysics of Adhesion

Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. It is also essential for infectious organisms, such as bacteria or viruses, to cause diseases. Understanding the biophysics of cell adhesion can help understand these diseases. Discover the latest research on the biophysics of adhesion here.

Cancer Biology: Molecular Imaging

Molecular imaging enables noninvasive imaging of key molecules that are crucial to tumor biology. Discover the latest research in molecular imaging in cancer biology in this feed.

Cancer Imaging

Imaging techniques, including CT and MR, have become essential to tumor detection, diagnosis, and monitoring. Here is the latest research on cancer imaging.

Cancer Metabolism

In order for cancer cells to maintain rapid, uncontrolled cell proliferation, they must acquire a source of energy. Cancer cells acquire metabolic energy from their surrounding environment and utilize the host cell nutrients to do so. Here is the latest research on cancer metabolism.

Cell Migration in Cancer and Metastasis

Migration of cancer cells into surrounding tissue and the vasculature is an initial step in tumor metastasis. Discover the latest research on cell migration in cancer and metastasis here.

Cell Signaling by Tyrosine Kinases

Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. RTKs have been shown not only to be key regulators of normal cellular processes but also to have a critical role in the development and progression of many types of cancer. Discover the latest research on cell signaling and RTK here.

Circadian Clock & Cancer

Circadian rhythms are natural, internal processes that regulate the sleep-wake cycle. Chronic disruptions in circadian rhythms have been associated with the development of a variety of diseases including cancer. Here is the latest research on circadian rhythms and cancer.

© 2020 Meta ULC. All rights reserved