Oct 6, 2015

3D RNA from evolutionary couplings

BioRxiv : the Preprint Server for Biology
Caleb WeinrebDebora S Marks


Non-protein-coding RNAs are ubiquitous in cell physiology, with a diverse repertoire of known functions. In fact, the majority of the eukaryotic genome does not code for proteins, and thousands of conserved long non-protein-coding RNAs of currently unkown function have been identified. When available, knowledge of their 3D structure is very helpful in elucidating the function of these RNAs. However, despite some outstanding structure elucidation of RNAs using X-ray crystallography, NMR and cryoEM, learning RNA 3D structures remains low-throughput. RNA structure prediction in silico is a promising alternative approach and works well for double-helical stems, but full 3D structure determination requires tertiary contacts outside of secondary structures that are difficult to infer from sequence information. Here, based only on information from RNA multiple sequence alignments, we use a global statistical sequence probability model of co-variation in a pairs of nucleotide positions to detect 3D contacts, in analogy to recently developed breakthrough methods for computational protein folding. In blinded tests on 22 known RNA structures ranging in size from 65 to 1800 nucleotides, the predicted contacts matched physical nucleotide in...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Molecular Dynamics
Positioning Attribute
Cellular Process
RNA, Untranslated
AS 6
Determination Aspects

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Researcher Network:CZI Neurodegeneration Challenge

The Neurodegeneration Challenge Network aims to provide funding for and to bring together researchers studying neurodegenerative diseases. Find the latest research from the NDCN grantees here.