DOI: 10.1101/505099Dec 26, 2018Paper

σ54 (σL) plays a central role in carbon metabolism in the industrially relevant Clostridium beijerinckii

BioRxiv : the Preprint Server for Biology
Rémi HocqFrançois Wasels

Abstract

Microbial production of butanol and isopropanol, two high value-added chemicals, is naturally occurring in the solventogenic Clostridium beijerinckii DSM 6423. Despite its ancient discovery, the precise mechanisms controlling alcohol synthesis in this microorganism are poorly understood. In this work, an allyl alcohol tolerant strain obtained by random mutagenesis was characterized. This strain, designated as the AA mutant, shows a dominant production of acids, a severely diminished butanol synthesis capacity, and produces acetone instead of isopropanol. Interestingly, this solvent-deficient strain was also found to have a limited consumption of two carbohydrates and to be still able to form spores, highlighting its particular phenotype. Sequencing of the AA mutant revealed point mutations in several genes including CIBE_0767 ( sigL ), which encodes the σ54 sigma factor. Complementation with the wild-type sigL gene fully restored solvent production and sugar assimilation, demonstrating that σ54 plays a central role in regulating these pathways in C. beijerinckii DSM 6423. Genomic comparison with other strains further revealed that these functions are probably conserved among the C. beijerinckii strains. The importance of σ54 i...Continue Reading

Related Concepts

Acetone
Acids
Appendicitis
Carbohydrates
Carbon
Genes
Isopropyl Alcohol
Metabolism
Sigma Factor
Software Tools

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.