Jan 7, 2016

A bacterial parasite effector mediates insect vector attraction in host plants independently of developmental changes

BioRxiv : the Preprint Server for Biology
Zigmunds Orlovskis, Saskia A Hogenhout

Abstract

Parasites can take over their hosts and trigger dramatic changes in host appearance and behaviour that are typically interpreted as extended phenotypes to promote parasite survival and fitness. For example, Toxoplasma gondii manipulates the behaviour of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation by birds. Plant parasites and pathogens also reprogram host development and morphology. Phytoplasma parasites of plants induce extensive leaf-like flower phenotype (phyllody) in their host plants, presumably to attract insect vectors on which these bacteria depend for transmission. However, it remains debatable whether morphological phenotypes, such as phyllody, are directly beneficial to the parasites or are side-products of parasite infection. Previously, we found that phytoplasma virulence protein (effector) SAP54 binds and mediates degradation of host MADS-box transcription factors (MTFs), regulatory hubs of plant development and hormone physiology, to induce phyllody and promote insect vector colonisation. Here we show that plants heterologously expressing SAP54 are strongly attractive to insects, but surprising...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Amphibians
FTMT gene
Science of Morphology
Trematoda
Insect Vectors
Toxoplasma gondii
Limb Structure
Cellular Reprogramming
Disease Transmission
Binding (Molecular Function)

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.