Nov 2, 2018

A brain network basis of Fragile X syndrome behavioral penetrance determined by X chromosome inactivation in female mice

BioRxiv : the Preprint Server for Biology
Eric SzelenyiPavel Osten

Abstract

X-chromosome inactivation (XCI) in females is vital for normal brain function and cognition, as many X-linked genetic mutations lead to mental retardation and autism spectrum disorders, such as the fragile X syndrome (FXS). However, the degree by which XCI regulates disease presentation has been poorly investigated. To study this regulation in the mouse, here we quantified the brainwide composition of active-XC cells at single cell resolution using an X-linked MECP2-EGFP allele with known parent-of-origin. We present evidence that whole-brains, including all regions, on average favor maternal XC-active cells by 20%, or 8 million cells. This bias was conserved in heterozygous FXS mutant mice, which also corresponded to disease penetrance in maternal but not paternal FMR1 null mice. To localize the physical source of behavioral penetrance, brain-wide correlational screens successfully mapped mouse performance to cell densities in putative sensorimotor (e.g. sensory hindbrain, thalamus, globus pallidus) and sociability (e.g. visual/entorhinal cortices, bed nucleus stria terminalis, medial preoptic area) behavioral circuits of the open field sensorimotor and 3-chamber sociability assays, respectively. Overall, 50%/50% healthy/mutan...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

MECP2 wt Allele
Fmr1
Fragile X Syndrome
Globus Pallidus
Methyl-CpG-Binding Protein 2
Regulation of Biological Process
Brain
FMR1
Hindbrain
FMR1 protein, human

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Autism

Autism spectrum disorder is associated with challenges with social skills, repetitive behaviors, and often accompanied by sensory sensitivities and medical issues. Here is the latest research.

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.

Allen Institute for Brain Science Network

The Allen Institute for Brain Science Network is a not-for-profit biomedical research organization that provides open access to multiple neuroscience tools and resources. Find the latest research from tjr Allen Institute for Brain Science Network here.