A calcium-based plasticity model predicts long-term potentiation and depression in the neocortex

BioRxiv : the Preprint Server for Biology
Giuseppe ChindemiE. B. Müller


Long-term potentiation (LTP) and long-term depression (LTD) of pyramidal cell connections are among the key mechanisms underlying learning and memory in the brain. Despite their important role, only a few of these connections have been characterized in terms of LTP/LTD dynamics, such as the one between layer 5 thick-tufted pyramidal cells (L5-TTPCs). Comparing the available evidence on different pyramidal connection types reveals a large variability of experimental outcomes, possibly indicating the presence of connection-type-specific mechanisms. Here, we show that a calcium-based plasticity rule regulating L5-TTPC synapses holds also for several other pyramidal-to-pyramidal connections in a digital model of neocortical tissue. In particular, we show that synaptic physiology, cell morphology and innervation patterns jointly determine LTP/LTD dynamics without requiring a different model or parameter set for each connection type. We therefore propose that a similar set of plasticity mechanisms is shared by seemingly very different neocortical connections and that only a small number of targeted experiments is required for generating a complete map of synaptic plasticity dynamics int he neocortex.

Related Concepts

Genetic Drift
Lactic Acid Measurement

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.