Oct 2, 2001

A common cis-acting sequence in the DiGeorge critical region regulates bi-directional transcription of UFD1L and CDC45L

Mechanisms of Development
A KunteD Srivastava


Two to three megabase deletions on chromosome 22q11 are the cytogenetic findings most commonly associated with cardiac and craniofacial defects in humans. The constellation of clinical findings associated with these deletions is termed the 22q11 deletion syndrome. We had earlier described a patient with the 22q11 deletion phenotype who was hemizygous for an atypical 20 kb microdeletion in this region. The deletion included coding regions of two genes organized head-to-head, UFD1L and CDC45L, along with an 884 bp CpG-rich intervening region. Based on this genomic organization, we hypothesized that both genes may be co-expressed and co-regulated by sequences within this region. We demonstrate that expression of both genes is enhanced in a similar pattern in precursors of structures affected by the deletion. The intergenic region is sufficient to direct transcription most strongly in the developing pharyngeal arches and limb buds of transgenic mice and can also direct bi-directional transcriptional activation in a neural crest-derived cell line. Deletion analyses revealed that a 404 bp fragment closest to UFD1L is necessary and sufficient to direct this bi-directional transcriptional activity. These results reveal the presence of ...Continue Reading

  • References26
  • Citations4


Mentioned in this Paper

Conserved Sequence
UFD1L protein, human
Cell Cycle Proteins
CDC45L protein, human
Cdc45 protein, mouse
Transcription, Genetic
Gene Products, Protein
Shprintzen Syndrome

Related Feeds

22q11 Deletion Syndrome

22q11.2 deletion syndrome, also known as DiGeorge syndrome, is a congenital disorder caused as a result of a partial deletion of chromosome 22. Here is the latest research.

Cardiac Conduction System

The cardiac conduction system is a specialized tract of myocardial cells responsible for maintaining normal cardiac rhythm. Discover the latest research on the cardiac conduction system here.