A compartmental model for oxygen transport in brain microcirculation
Abstract
A compartmental model is formulated for oxygen transport in the cerebrovascular bed of the brain. The model considers the arteriolar, capillary and venular vessels. The vascular bed is represented as a series of compartments on the basis of blood vessel diameter. The formulation takes into account such parameters as hematocrit, vascular diameter, blood viscosity, blood flow, metabolic rate, the nonlinear oxygen dissociation curve, arterial PO2, P50 (oxygen tension at 50% hemoglobin saturation with O2) and carbon monoxide concentration. The countercurrent diffusional exchange between paired arterioles and venules is incorporated into the model. The model predicts significant longitudinal PO2 gradients in the precapillary vessels. However, gradients of hemoglobin saturation with oxygen remain fairly small. The longitudinal PO2 gradients in the postcapillary vessels are found to be very small. The effect of the following variables on tissue PO2 is studied: blood flow, PO2 in the arterial blood, hematocrit, P50, concentration of carbon monoxide, metabolic rate, arterial diameter, and the number of perfused capillaries. The qualitative features of PO2 distribution in the vascular network are not altered with moderate variation of th...Continue Reading
References
Citations
The effects of transit time heterogeneity on brain oxygenation during rest and functional activation
Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent
Blood Flow Versus Hematocrit in Optimization of Oxygen Transfer to Tissue During Fluid Resuscitation
Related Concepts
Related Feeds
Blood Brain Barrier
The blood brain barrier is a border that separates blood from cerebrospinal fluid. Discover the latest search on this highly selective semipermeable membrane here.
Blood Brain Barrier Chips
The blood brain barrier (BBB) is comprised of endothelial cells that regulate the influx and outflux of plasma concentrations. Lab-on-a-chip devices allow scientists to model diseases and mechanisms such as the passage of therapeutic antibodies across the BBB. Discover the latest research on BBB chips here.