Feb 20, 2015

A complete bacterial genome assembled de novo using only nanopore sequencing data

BioRxiv : the Preprint Server for Biology
Nicholas LomanJared T Simpson

Abstract

A method for de novo assembly of data from the Oxford Nanopore MinION instrument is presented which is able to reconstruct the sequence of an entire bacterial chromosome in a single contig. Initially, overlaps between nanopore reads are detected. Reads are then subjected to one or more rounds of error correction by a multiple alignment process employing partial order graphs. After correction, reads are assembled using the Celera assembler. Finally, the assembly is polished using signal-level data from the nanopore employing a novel hidden Markov model. We show that this method is able to assemble nanopore reads from Escherichia coli K-12 MG1655 into a single contig of length 4.6Mb permitting a full reconstruction of gene order. The resulting draft assembly has 98.4% nucleotide identity compared to the finished reference genome. After polishing the assembly with our signal-level HMM, the nucleotide identity is improved to 99.4%. We show that MinION sequencing data can be used to reconstruct genomes without the need for a reference sequence or data from other sequencing platforms.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome
Genes
SECTM1 protein, human
Reconstructive Surgical Procedures
Nucleic Acid Sequencing
Sequencing
Instrument - Device
Nucleotides
Chromosomes, Bacterial
Chromosomes

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.