Apr 23, 2020

FastSK: Fast Sequence Analysis with Gapped String Kernels

BioRxiv : the Preprint Server for Biology
D. BlakelyYanjun Qi


Gapped k-mer kernels with Support Vector Machines (gkm-SVMs) have achieved strong predictive performance on regulatory DNA sequences on modestly-sized training sets. However, existing gkm-SVM algorithms suffer from the slow kernel computation time, as they depend exponentially on the sub-sequence feature-length, number of mismatch positions, and the task's alphabet size. In this work, we introduce a fast and scalable algorithm for calculating gapped k-mer string kernels. Our method, named FastSK, uses a simplified kernel formulation that decomposes the kernel calculation into a set of independent counting operations over the possible mismatch positions. This simplified decomposition allows us to devise a fast Monte Carlo approximation that rapidly converges. FastSK can scale to much greater feature lengths, allows us to consider more mismatches, and is performant on a variety of sequence analysis tasks. On 10 DNA transcription factor binding site (TFBS) prediction datasets, FastSK consistently matches or outperforms the state-of-the-art gkmSVM-2.0 algorithms in AUC, while achieving average speedups in kernel computation of 100 times and speedups of 800 times for large feature lengths. We further show that FastSK outperforms cha...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

HEK293 Cells
Meco Complex
Mass Spectrometry
High Throughput Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.