Jan 15, 2016

A convex optimization approach for identification of human tissue-specific interactomes

BioRxiv : the Preprint Server for Biology
Shahin Mohammadi, Ananth Grama


Analysis of organism-specific interactomes has yielded novel insights into cellular function and coordination, understanding of pathology, and identification of markers and drug targets. Genes, however, can exhibit varying levels of cell-type specificity in their expression, and their coordinated expression manifests in tissue-specific function and pathology. Tissue-specific/ selective interaction mechanisms have significant applications in drug discovery, as they are more likely to reveal drug targets. Furthermore, tissue-specific transcription factors (tsTFs) are significantly implicated in human disease, including cancers. Finally, disease genes and protein complexes have the tendency to be differentially-expressed in tissues in which defects cause pathology. These observations motivate construction of refined tissue-specific interactomes from organism-specific interactomes. We present a novel technique for constructing human tissue-specific interactomes. Using a variety of validation tests (ESEA, GO Enrichment, Disease-Gene Subnetwork Compactness), we show that our proposed approach significantly outperforms state of the art techniques. Finally, using case studies of Alzheimer's and Parkinson's diseases, we show that tissue...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Biological Markers
Biochemical Pathway
Complex (molecular entity)
Tissue Specificity
Alzheimer's Disease
Pharmacologic Substance
Parkinson Disease

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Alzheimer's Disease: Microglia (Preprints)

Microglial proliferation and activation, as well as its concentration around amyloid plaques, is a prominent feature of Alzheimer’s disease. Here is the latest research on microglia and Alzheimer’s disease.