A cortical circuit for gain control by behavioral state

Yu FuMichael P Stryker


The brain's response to sensory input is strikingly modulated by behavioral state. Notably, the visual response of mouse primary visual cortex (V1) is enhanced by locomotion, a tractable and accessible example of a time-locked change in cortical state. The neural circuits that transmit behavioral state to sensory cortex to produce this modulation are unknown. In vivo calcium imaging of behaving animals revealed that locomotion activates vasoactive intestinal peptide (VIP)-positive neurons in mouse V1 independent of visual stimulation and largely through nicotinic inputs from basal forebrain. Optogenetic activation of VIP neurons increased V1 visual responses in stationary awake mice, artificially mimicking the effect of locomotion, and photolytic damage of VIP neurons abolished the enhancement of V1 responses by locomotion. These findings establish a cortical circuit for the enhancement of visual response by locomotion and provide a potential common circuit for the modulation of sensory processing by behavioral state.


Jan 1, 1991·Progress in Neurobiology·E Garcia-Rill
Jan 1, 1990·Annual Review of Neuroscience·M I Posner, S E Petersen
Apr 1, 1983·Behavioural Brain Research·J W MinkD B Adams
Jan 1, 1997·Spatial Vision·D H Brainard
Sep 10, 2002·Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences·John H R Maunsell, Erik P Cook
Jun 5, 2003·Proceedings of the National Academy of Sciences of the United States of America·Christoph StosiekArthur Konnerth
Jun 26, 2004·Annual Review of Neuroscience·John H Reynolds, Leonardo Chelazzi
Sep 21, 2004·Nature Reviews. Neuroscience·Henry MarkramCaizhi Wu
Nov 19, 2004·The Journal of Neuroscience : the Official Journal of the Society for Neuroscience·Rosa RodriguezMatthias H J Munk
Feb 1, 2005·Neuroscience·N Schmitzer-TorbertA D Redish
Nov 2, 2005·Nature Reviews. Neuroscience·Takao K Hensch
Dec 29, 2006·Journal of Molecular Neuroscience : MN·M E Hasselmo, L M Giocomo
Aug 21, 2007·Nature Reviews. Neuroscience·Z J HuangF Ango
Jan 17, 2008·Optics Letters·Manuel Guizar-SicairosJames R Fienup
Feb 22, 2008·Journal of Neurophysiology·Calin I Buia, Paul H Tiesinga
Apr 19, 2008·Science·José Fernando Maya VetencourtLamberto Maffei
Jul 11, 2008·Journal of Neurophysiology·Alfredo Fontanini, Donald B Katz
Jul 25, 2008·The Journal of Neuroscience : the Official Journal of the Society for Neuroscience·Cristopher M Niell, Michael P Stryker
Oct 23, 2008·Proceedings of the National Academy of Sciences of the United States of America·Sunil P GandhiMichael P Stryker
Mar 2, 2010·Neuron·Cristopher M Niell, Michael P Stryker
Dec 15, 2010·Developmental Neurobiology·Bernardo RudyJens Hjerling-Leffler
Dec 17, 2010·The Journal of Neuroscience : the Official Journal of the Society for Neuroscience·SooHyun LeeBernardo Rudy
Jul 14, 2011·Nature Neuroscience·Sandra J KuhlmanJoshua T Trachtenberg
Jun 19, 2012·Frontiers in Behavioral Neuroscience·Ehren L NewmanMichael E Hasselmo
May 15, 2013·Current Biology : CB·Aslı AyazMatteo Carandini
Jul 23, 2013·Nature Neuroscience·Pierre-Olivier PolackPeyman Golshani
Oct 8, 2013·Nature Neuroscience·Soohyun LeeBernardo Rudy

❮ Previous
Next ❯


Oct 14, 2014·Current Opinion in Neurobiology·Edward Zagha, David A McCormick
Jul 25, 2014·Current Opinion in Neurobiology·Jason C Wester, Chris J McBain
Feb 13, 2016·Current Opinion in Neurobiology·Kenneth D Miller
Feb 13, 2016·Nature Reviews. Neuroscience·Nicolas X TritschBernardo L Sabatini
Jun 8, 2014·The Journal of Physiology·Ben D B WillmoreAndrew J King
Jan 13, 2016·Proceedings of the National Academy of Sciences of the United States of America·Nanhong LouMaiken Nedergaard
Dec 23, 2015·Nature Neuroscience·Morgane M RothSonja B Hofer
Jul 30, 2015·Neuropharmacology·Adam J GrangerBernardo L Sabatini
Jun 1, 2014·The Journal of Physiology·Rogier B PoorthuisJohannes J Letzkus
Jul 16, 2015·Current Opinion in Neurobiology·Pico Caroni
Mar 11, 2015·Current Biology : CB·M Hadi SaiepourChristiaan N Levelt
Mar 5, 2016·Neuron·Hey-Kyoung Lee
Dec 9, 2014·Current Biology : CB·Sinem EriskenLaura Busse
Dec 9, 2014·Cell Reports·Emmanuel EggermannCarl C H Petersen
Oct 13, 2015·Nature Neuroscience·Min XuYang Dan
Jul 18, 2014·Neuron·Corbett BennettShaul Hestrin
Jul 4, 2015·Neuron·Joseph B Wekselblatt, Cristopher M Niell
Sep 25, 2015·Neuron·Bryan A SeyboldAndrea R Hasenstaub
Sep 25, 2015·Neuron·Matthew J McGinleyDavid A McCormick
Jun 16, 2015·Current Biology : CB·Ashley L Juavinett, Edward M Callaway
Aug 19, 2015·Biological Psychiatry·Monika P JadiTerrence J Sejnowski
Oct 8, 2014·Current Opinion in Neurobiology·Lisa M Giocomo
Apr 2, 2015·Current Opinion in Neurobiology·David M Schneider, Richard Mooney
May 8, 2015·Neuron·Juan Carlos Izpisua BelmonteFeng Zhang
May 6, 2015·Annual Review of Neuroscience·Cristopher M Niell
Jun 16, 2015·Neuron·Matthew J McGinleyDavid A McCormick
Jun 25, 2015·Frontiers in Neural Circuits·Lukas MesikHuizhong W Tao
Jun 16, 2015·Frontiers in Neural Circuits·Niall McAlindenKeith Mathieson
Apr 29, 2015·Nature Neuroscience·Naiyan ChenMriganka Sur
Feb 11, 2015·Current Opinion in Neurobiology·Axel Nimmerjahn, Dwight E Bergles
Apr 17, 2015·Current Opinion in Neurobiology·Simon PeronKarel Svoboda

❮ Previous
Next ❯

Related Concepts

Related Feeds

Cell eTOC

Cell is a scientific journal publishing research across a broad range of disciplines within the life sciences field. Discover the latest research from Cell here.

Basal Forebrain & Food Avoidance

Neurons in the basal forebrain play specific roles in regulating feeding. Here are the latest discoveries pertaining to the basal forebrain and food avoidance.

Basal Forebrain- Circuits

Basal forebrain is a region in the brain important for production of acetylcholine and is the major cholinergic output of the CNS. Discover the latest research on circuits in the basal forebrain here.

© 2021 Meta ULC. All rights reserved