A demonstration of the effectiveness of a single aberration correction per optical slice in beam scanned optically sectioning microscopes

Micron : the International Research and Review Journal for Microscopy
Simon P PolandJohn M Girkin


In this paper we report the use of adaptive optics to correct for sample induced aberrations in optical microscopy, crucially comparing individual pixel-by-pixel correction against a single correction for an entire optical section. Sample induced optical aberrations in slices of rat brain tissue were corrected with a deformable membrane mirror. Using axial resolution measurements, we demonstrate that a single aberration correction per optical slice achieves around 80% of the maximum possible improvement compared to individual pixel-by-pixel correction in both confocal and multiphoton microscopy. A single aberration correction per depth, compared to pixel-by-pixel aberration correction, significantly decreases scan times and therefore reduces photobleaching and phototoxic effects enabling more rapid microscopy with active aberration correction. The results confirm that the use of a "look-up" table, based upon sample type and depth, may be the most practical way of implementing adaptive optic aberration correction in beam scanning optical sectioning microscopy.


Jun 25, 1998·Journal of Oral Rehabilitation·K W Tyson
Aug 14, 2001·Cytometry·R M Zucker, O Price
Apr 18, 2002·Proceedings of the National Academy of Sciences of the United States of America·Martin J BoothTony Wilson
Mar 11, 2009·Current Opinion in Biotechnology·John M GirkinAmanda J Wright
May 19, 2003·Optics Express·P MarshJohn M Girkin
Dec 24, 2007·Optics Express·Amanda J WrightX S Xie

Related Concepts

Brain Tissue
Microscopy, Fluorescence, Multiphoton

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.