A Dendritic Disinhibitory Circuit Mechanism for Pathway-Specific Gating

BioRxiv : the Preprint Server for Biology
Guangyu R YangXiao-Jing Wang

Abstract

In this work we propose that a disinhibitory circuit motif, which recently gained experimental support, can instantiate flexible routing of information flow along selective pathways in a complex system of cortical areas according to behavioral demands (pathway-specific gating). We developed a network model of pyramidal neurons and three classes of interneurons, with connection probabilities constrained by data. If distinct input pathways cluster on separate dendritic branches of pyramidal neurons, then a pathway can be gated-on by disinhibiting targeted dendrites. We show that this branch-specific disinhibition can be achieved despite dense interneuronal connectivity, even under the assumption of random connections. We found clustering of input pathways on dendrites can emerge through synaptic plasticity regulated by disinhibition. This gating mechanism in a neural circuit is further demonstrated by performing a context-dependent decision-making task. Our findings suggest a microcircuit architecture that harnesses dendritic computation and diverse inhibitory neuron types to subserve cognitive flexibility.

Related Concepts

Body Regions
Decision Making
Interneurons
Neurons
Branching (Qualifier Value)
Pyramidal Cells
Neural Stem Cells
Regulation of Synaptic Plasticity
Computed (Procedure)
Biochemical Pathway

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Brain Lower Grade Glioma

Low grade gliomas in the brain form from oligodendrocytes and astrocytes and are the slowest-growing glioma in adults. Discover the latest research on these brain tumors here.