Apr 1, 2018

A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production

Free Radical Biology & Medicine
Abhaypratap VishwakarmaKapuganti Jagadis Gupta

Abstract

Alternative oxidase (AOX) is an integral part of the mitochondrial electron transport and can prevent reactive oxygen species (ROS) and nitric oxide (NO) production under non-stressed, normoxic conditions. Here we assessed the roles of AOX by imposing stress under normoxia in comparison to hypoxic conditions using AOX over expressing (AOX OE) and anti-sense (AOX AS) transgenic Arabidopsis seedlings and roots. Under normoxic conditions stress was induced with the defence elicitor flagellin (flg22). AOX OE reduced NO production whilst this was increased in AOX AS. Moreover AOX AS also exhibited an increase in superoxide and therefore peroxynitrite, tyrosine nitration suggesting that scavenging of NO by AOX can prevent toxic peroxynitrite formation under normoxia. In contrast, during hypoxia interestingly we found that AOX is a generator of NO. Thus, the NO produced during hypoxia, was enhanced in AOX OE and suppressed in AOX AS. Additionally, treatment of WT or AOX OE with the AOX inhibitor SHAM inhibited hypoxic NO production. The enhanced levels of NO correlated with expression of non-symbiotic haemoglobin, increased NR activity and ATP production. The ATP generation was suppressed in nia1,2 mutant and non symbiotic haemoglobin...Continue Reading

  • References
  • Citations17

References

  • We're still populating references for this paper, please check back later.

Mentioned in this Paper

Dioxygen
Salicylhydroxamic acid
toxicant
Arabidopsis
Flagellin
Energy Metabolism
Oxidase
Inhibitors
Peroxynitrite
Oxygen Measurement, Partial Pressure, Arterial

Related Feeds

Antisense Oligonucleotides: ND

This feed focuses on antisense oligonucleotide therapies such as Inotersen, Nusinursen, and Patisiran, in neurodegenerative diseases including amyotrophic lateral sclerosis.