Nov 1, 1994

A fluorescence-based assay for human type II phospholipase A2

Analytical Biochemistry
S G BlanchardD J Parks

Abstract

A fluorescence assay for quantitation of human Type II Phospholipase A2 activity is described. Hydrolysis of 1-Acyl-2-(N-4-nitrobenzo-2-oxo-1,3-diazole)aminododecanoyl Phosphatidylethanolamine is accompanied by an increase in fluorescence intensity that is linearly proportional to enzyme activity. Substrate is prepared in the absence of detergents as a sonicated dispersion in aqueous buffer. Hydrolysis of the corresponding phosphatidylcholine derivative is more than an order of magnitude slower under identical assay conditions. A plot of initial rate versus substrate concentration could be fit to a simple Michaelis-Menten relationship with Km = 13 microM. In contrast to commonly used radiochemical assays for this enzyme, the method described here is continuous and allows estimation of enzyme activity without separation of substrate from product. Thus, the method is suitable for both kinetic analysis and large-scale screening using automated readers for 96-well tissue culture plates. The fluorescence-based assay displays advantages over other continuous assays for human Type II Phospholipase A2 based on (a) high sensitivity and (b) the use of a commercially available substrate.

  • References
  • Citations4

References

  • We're still populating references for this paper, please check back later.

Mentioned in this Paper

Titrimetry
Phospholipase A2, human
Fluorometry
Log-Linear Models
Phosphatidylethanolamine
Phosphatidylcholines
Enzyme Activity
Substrate Specificity
Blood Enzyme Activity (Lab Test)
Radiopharmaceuticals

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.