Jan 18, 2018

A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578

BMC Biology
Yi ShenRobert E Campbell

Abstract

Genetically encoded calcium ion (Ca2+) indicators (GECIs) are indispensable tools for measuring Ca2+ dynamics and neuronal activities in vitro and in vivo. Red fluorescent protein (RFP)-based GECIs have inherent advantages relative to green fluorescent protein-based GECIs due to the longer wavelength light used for excitation. Longer wavelength light is associated with decreased phototoxicity and deeper penetration through tissue. Red GECI can also enable multicolor visualization with blue- or cyan-excitable fluorophores. Here we report the development, structure, and validation of a new RFP-based GECI, K-GECO1, based on a circularly permutated RFP derived from the sea anemone Entacmaea quadricolor. We have characterized the performance of K-GECO1 in cultured HeLa cells, dissociated neurons, stem-cell-derived cardiomyocytes, organotypic brain slices, zebrafish spinal cord in vivo, and mouse brain in vivo. K-GECO1 is the archetype of a new lineage of GECIs based on the RFP eqFP578 scaffold. It offers high sensitivity and fast kinetics, similar or better than those of current state-of-the-art indicators, with diminished lysosomal accumulation and minimal blue-light photoactivation. Further refinements of the K-GECO1 lineage could...Continue Reading

Mentioned in this Paper

In Vivo
Calcium
Organ Culture Techniques
Malignant Neoplasm of Spinal Cord
Dermatitis, Phototoxic
Neurons
Brain
Entacmaea quadricolor
Calcium ion
Tamiasciurus hudsonicus

Related Feeds

Cardiac Regeneration

Cardiac regeneration enables the repair of irreversibly damaged heart tissue using cutting-edge science, including stem cell and cell-free therapy. Discover the latest research on cardiac regeneration here.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.