Dec 1, 1989

A high-molecular-weight fraction of smooth lipopolysaccharide in Klebsiella serotype O1:K20 contains a unique O-antigen epitope and determines resistance to nonspecific serum killing

Infection and Immunity
K L McCallumC Whitfield

Abstract

The lipopolysaccharide (LPS) O-antigen side chains of Klebsiella serotype O1 have been studied by using mutants selected by resistance to a Klebsiella bacteriophage designated O1-A. Two classes of LPS mutants were identified. The major group (90%) synthesized rough LPS. The remaining 10% of the mutants produced a novel LPS profile that lacked the highest-molecular-weight O-substituted molecules (HMW-LPS) but still produced lower-molecular-weight O-substituted species (LMW-LPS). By using antisera raised against mutant Klebsiella strains and antiserum specific for Pasteurella haemolytica serotype 4, it was demonstrated that HMW-LPS and LMW-LPS contain shared epitopes. HMW-LPS also contained an epitope absent in LMW-LPS. This unique epitope was recognized by a monoclonal antibody (O1-52.6) and appears to be responsible for the serological cross-reaction between the O antigens of Klebsiella O1 and Escherichia coli O19. This HMW-LPS epitope was present in eight other Klebsiella O1 isolates which were examined. Electron microscopy demonstrated that HMW-LPS excluded overlying capsular polysaccharide for a distance of 25 to 40 nm. The distance was reduced to 10 to 18 nm in strains which synthesized only LMW-LPS and to zero in rough LPS...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Antigenic Specificity
Bacteriophages
Serotyping
Antigens, Bacterial
Electron Microscopy
Klebsiella rhinoscleromatis
Lipopolysaccharides
Blood Bactericidal Activity
Van Der Woude Syndrome
O Antigens

About this Paper

Related Feeds

Bacteriophage: Phage Therapy

Phage therapy uses bacterial viruses (bacteriophages) to treat bacterial infections and is widely being recognized as an alternative to antibiotics. Here is the latest research.