Mar 29, 2020

Detecting genomic deletions from high-throughput sequence data with unsupervised learning

BioRxiv : the Preprint Server for Biology
Alexander Pinkowski, Walter Lilienblum

Abstract

Structural variation (SV), which ranges from 50 bp to ~3 Mb in size, is an important type of genetic variations. Deletion is a type of SV in which a part of a chromosome or a sequence of DNA is lost during DNA replication. Three types of signals, including discordant read-pairs, reads depth and split reads, are commonly used for SV detection from high-throughput sequence data. Many tools have been developed for detecting SVs by using one or multiple of these signals. In this paper, we develop a new method called EigenDel for detecting genomic deletions. EigenDel first takes advantage of discordant read-pairs and clipped reads to get initial deletion candidates, and then it clusters similar candidates by using unsupervised learning methods. After that, EigenDel uses a carefully designed approach for calling true deletions from each cluster. We conduct various experiments to evaluate the performance of EigenDel on low coverage sequence data. Our results show that EigenDel outperforms other major methods in terms of improving capability of balancing accuracy and sensitivity as well as reducing bias. EigenDel can be downloaded from https://github.com/lxwgcool/EigenDel.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Tumor Cells, Uncertain Whether Benign or Malignant
Decompression Sickness
Circulatory System
Martinellic acid
Cardiovascular System
Blood Vessel
Neoplasms
Bending - Changing Basic Body Position
Blood Flow
Rouleaux Formation Count

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.