Oct 24, 2018

A Machine Learning Approach To Map Tropical Selective Logging

BioRxiv : the Preprint Server for Biology
Matthew G HethcoatShaun Quegan

Abstract

Hundreds of millions of hectares of tropical forest have been selectively logged, either legally or illegally. Methods for detecting and monitoring tropical selective logging using satellite data are at an early stage, with current methods only able to detect more intensive timber harvest (>20 m3 ha-1). The spatial resolution of widely available datasets, like Landsat, have previously been considered too coarse to measure the subtle changes in forests associated with less intensive selective logging, yet most present-day logging is at low intensity. We utilized a detailed selective logging dataset from over 11,000 ha of forest in Rondônia, southern Brazilian Amazon, to develop a Random Forest machine-learning algorithm for detecting low-intensity selective logging (< 15 m3 ha-1). We show that Landsat imagery acquired before the cessation of logging activities (i.e. the final cloud-free image of the dry season during logging) was better at detecting selective logging than imagery acquired at the start of the following dry season (i.e. the first cloud-free image of the next dry season). Within our study area the detection rate of logged pixels was approximately 90% (with roughly 20% commission and 8% omission error rates) and app...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Tract
Spatial Distribution
Carbon
Site
South
Monitoring - Action
HMHA1
HMHA1 gene
Substance P (5-11), N,N-diMe-Gln(6)-

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.