Neuronal kinase SGK1.1 protects against brain damage after status epilepticus

BioRxiv : the Preprint Server for Biology
Elva Martin-BatistaTeresa Giraldez

Abstract

Epilepsy is a neurological condition associated to significant brain damage produced by status epilepticus (SE) including neurodegeneration, gliosis and ectopic neurogenesis. Reduction of these processes constitutes a useful strategy to improve recovery and ameliorate negative outcomes after an initial insult. SGK1.1, the neuronal isoform of the serum and glucocorticoids-regulated kinase 1 (SGK1), has been shown to increase M-current density in neurons, leading to reduced excitability and protection against seizures. We now show that SGK1.1 activation potently reduces levels of neuronal death and gliosis after SE induced by kainate, even in the context of high seizure activity. This neuroprotective effect is not exclusively a secondary effect of M-current activation but is also directly linked to decreased apoptosis levels through regulation of Bim and Bcl-xL cellular levels. Our results demonstrate that this newly described antiapoptotic role of SGK1.1 activation acts synergistically with the regulation of cellular excitability, resulting in a significant reduction of SE-induced brain damage. The protective role of SGK1.1 occurs without altering basal neurogenesis in brain areas relevant to epileptogenesis.

Related Concepts

Genome
Genes
Dysequilibrium Syndrome
Genetic Linkage
Gene Mutant
EAF2 gene
BAT Loci

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

BioRxiv : the Preprint Server for Biology
Natalia Armas-CapoteTeresa Giraldez
Proceedings of the National Academy of Sciences of the United States of America
María F ArteagaCecilia M Canessa
© 2020 Meta ULC. All rights reserved