Jan 31, 1983

A new type of mitochondrial monoamine oxidase distinct from type-A and type-B

Life Sciences
H KinemuchiK Kamijo

Abstract

The characteristics of mitochondrial monoamine oxidase (MAO) in carp liver were studied with MAO inhibitors and substrates. This enzyme was thermolabile, but was stabilized in the presence of bovine serum albumin. With clorgyline and deprenyl, single-sigmoidal curves for inhibition of the activity towards tyramine or 5-hydroxytryptamine were obtained; the sensitivities to the two inhibitors were identical. The activity towards beta-phenylethylamine was not completely inhibited by clorgyline or deprenyl, but the remaining activity was inhibited by semicarbazide and the inhibition curves by either clorgyline or deprenyl and semicarbazide were also identical to the curves with the other two substrates. These results suggest that carp liver mitochondria contain "classical" MAO and a clorgyline- and deprenyl-resistant amine oxidase and that the classical MAO does not seem to be MAO-A or MAO-B, which are present in mitochondria of most mammalian tissues.

  • References2
  • Citations12

References

  • References2
  • Citations12

Citations

Mentioned in this Paper

Reversible Inhibitors of Monoamine Oxidase
Carp antigen
Phenethylamine
Carbamylhydrazine
Carp, fish
Serotonin
CA8 gene
ALB
Monoamine Oxidase [PK]
FAM188A gene

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.

Related Papers

Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology
A Nicotra, O Senatori
Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology
H KinemuchiK Kamijo
Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology
O SenatoriR Scopelliti
© 2020 Meta ULC. All rights reserved