Jan 6, 2016

A Notch and Su(H) dependent enhancer complex coordinates expression of nab in Drosophila

BioRxiv : the Preprint Server for Biology
Elizabeth Stroebele, Albert Erives


The transcription factor Suppressor of Hairless and its co-activator, the Notch intracellular domain, are polyglutamine (pQ)-rich factors that target enhancer elements and interact with other locally-bound pQ-rich factors. To understand the functional repertoire of such enhancers, we identify conserved regulatory belts with binding sites for the pQ-rich effectors of both Notch and BMP/Dpp signaling, and the pQ-deficient tissue selectors Apterous (Ap), Scalloped (Sd), and Vestigial (Vg). We find that the densest such binding site cluster in the genome is located in the BMP-inducible nab locus, a homolog of the vertebrate transcriptional co-factors NAB1/NAB2. We report three major findings. First, we find that this nab regulatory belt is a novel enhancer driving dorsal wing margin expression in regions of peak phosphorylated-Mad in wing imaginal discs. Second, we show that Ap is developmentally required to license the nab dorsal wing margin enhancer (DWME) to read-out Notch signaling in the dorsal wing compartment. Third, we find that the nab DWME is embedded in a complex of intronic enhancers, including a wing quadrant enhancer, a proximal wing disc enhancer, and a larval brain enhancer. This enhancer complex coordinates global ...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Surgical margins
Bounded by
Nanoparticle Albumin-Bound Rapamycin
Body Fluid Compartments
Pecten jacobaeus homeopathic preparations

About this Paper

Related Feeds

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.