Mar 25, 2020

Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells

BioRxiv : the Preprint Server for Biology
Ramesh ChittajalluC. J. McBain

Abstract

Spatiotemporal interactions between glutamatergic excitatory and GABAergic inhibitory neurons underly input-output transformations critical for complex brain functions. However, the extent of malleability in this interplay particularly that occuring via modifications in GABAergic interneuron recruitment and output is relatively unexplored in humans. We demonstrate that a specialized interneuron subtype collectively termed neurogliaform cells embedded in both mouse and human neural circuits are susceptible to remarkably similar activity-dependent modulation in their intrinsic properties including the previously characterized distal axonal phenomenon known as barrage firing. Interestingly, we reveal a parallel yet hitherto undescribed plasticity, occurring in the absence of barrage firing manifesting as an enhanced efficacy of excitatory depolarizing inputs to somatodendritic domains in eliciting action potential output. In principle, these evolutionary conserved plasticity routes tune the extent of inhibition mediated by neurogliaform cells constituting circuit mechanisms relevant for human cognitive processing and behavior.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Phylogenetic Analysis
Anatomical Space Structure
Adaptation
Location
Posterior Pituitary Disease
Biological Evolution
Landscapes

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.