Feb 1, 1990

A novel differentiation method of vehicle models for topically applied drugs: application to a therapeutic timolol patch

Journal of Pharmaceutical Sciences
K KubotaT Ishizaki


A novel method to differentiate basic vehicle models for topically applied drugs is proposed. In this method, the rate of drug release as a function of time, obtained by using a flow-through cell, is plotted on both semilogarithmic and logarithmic scales. In the Solution Case, where all of the drug is dissolved in the vehicle, the profiles become linear on the semilogarithmic scale. However, in the Suspension Case, where the initial drug amount per vehicle volume is greater than the solubility of the drug and the vehicle contains finely dispersed drug, the profiles are linear on the logarithmic scale with a slope of -0.5. They abruptly depart from this pattern upon depletion of the suspended phase. The different attributes of the profiles for the drug release rate-time curves in these two cases can be visualized more clearly when vehicle thickness and drug concentration are varied. The theoretical principles are illustrated in profiles for the drug release-rate time plots of therapeutic patches containing the beta blocker timolol. This was formulated at different concentrations in an acryl copolymer with varied thickness. The release profiles were best fitted to the Solution Case treatment of the data.

  • References1
  • Citations6


Mentioned in this Paper

Controlled-Release Preparations
Pharmaceutical Vehicles
Administration, Topical
Cell Differentiation Process
Paste Substance

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.

Related Papers

Journal of Pharmacokinetics and Biopharmaceutics
K Kubota, T Ishizaki
Journal of Pharmaceutical Sciences
E R Cooper, B Berner
© 2020 Meta ULC. All rights reserved