DOI: 10.1101/507962Dec 28, 2018Paper

A pairwise maximum entropy model uncovers the white matter scaffold underlying emergent dynamics in intracranial EEG

BioRxiv : the Preprint Server for Biology
Arian AshourvanBrian Litt

Abstract

A major challenge in systems neuroscience is to understand how the brain's structural architecture gives rise to its complex functional dynamics. Here, we address this challenge by examining the inter-ictal activity of five patients with medically refractory epilepsy during ~15 hours of multi-channel intracranial recording. By constructing a pairwise maximum entropy model (MEM) of the observed neural dynamics, we seek to uncover the fundamental relationship between functional activity and its underlying structural substrate. Despite only incorporating the pairwise correlations in the observed neural activity, we find that the pairwise MEM robustly fits large-scale patterns of inter-ictal power dynamics across a wide range of frequency bands, notably displaying time-invariance and cross-frequency similarity. Furthermore, across all frequency bands, we demonstrate that the pairwise MEM accurately identifies the structural white matter connections between brain regions, outperforming other common model-free measures of functional connectivity. Together, our findings show that a simple pairwise MEM, which is explicitly ignorant of higher-order correlations between three or more brain regions, not only captures complex spatiotempora...Continue Reading

Related Concepts

Brain
Cerebral Ventricles
Electroencephalography
Channel
Patterns
Intracranial
Structure
White Matter
Drug Resistant Epilepsy
Neural Stem Cells

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.