Jun 1, 2020

A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action

Journal of Controlled Release : Official Journal of the Controlled Release Society
Alexander KominKalina Hristova

Abstract

The rate of transport of small molecule drugs across biological barriers, such as the blood-brain barrier, is often a limiting factor in achieving a therapeutic dose. One proposed strategy to enhance delivery across endothelial or epithelial monolayers is conjugation to cell-penetrating peptides (CPPs); however, very little is known about the design of CPPs for efficient transcellular transport. Here, we report on transcellular transport of a CPP, designated the CL peptide, that increases the delivery of small-molecule cargoes across model epithelium approximately 10-fold. The CL peptide contains a helix-like motif and a polyarginine tail. We investigated the effect of cargo, helix-like motif sequence, polyarginine tail length, and peptide stereochemistry on cargo delivery. We showed that there is an optimal helix-like motif sequence (RLLRLLR) and polyarginine tail length (R7) for cargo delivery. Furthermore, we demonstrated that the peptide-cargo conjugate is cleaved by cells in the epithelium at the site of a two-amino acid linker. The cleavage releases the cargo with the N-terminal linker amino acid from the peptide prior to transport out of the epithelium. These studies provide new insight into the sequence requirements for...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Peptides
cyclopenta(c, d)pyrene
Small Molecule
Polyarginine
Pharmacologic Substance
Helix-Turn-Helix Motifs
Transcytosis
Molecular Stereochemistry
Transcytotic Pathways
Blood - Brain Barrier Anatomy

Related Feeds

Blood Brain Barrier

The blood brain barrier is a border that separates blood from cerebrospinal fluid. Discover the latest search on this highly selective semipermeable membrane here.

Blood Brain Barrier Chips

The blood brain barrier (BBB) is comprised of endothelial cells that regulate the influx and outflux of plasma concentrations. Lab-on-a-chip devices allow scientists to model diseases and mechanisms such as the passage of therapeutic antibodies across the BBB. Discover the latest research on BBB chips here.