Jan 12, 2016

A performance-optimized model of neural responses across the ventral visual stream

BioRxiv : the Preprint Server for Biology
Darren SeibertJustin L Gardner


Human visual object recognition is subserved by a multitude of cortical areas. To make sense of this system, one line of research focused on response properties of primary visual cortex neurons and developed theoretical models of a set of canonical computations such as convolution, thresholding, exponentiating and normalization that could be hierarchically repeated to give rise to more complex representations. Another line or research focused on response properties of high-level visual cortex and linked these to semantic categories useful for object recognition. Here, we hypothesized that the panoply of visual representations in the human ventral stream may be understood as emergent properties of a system constrained both by simple canonical computations and by top-level, object recognition functionality in a single unified framework (Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Guclu and van Gerven, 2015). We built a deep convolutional neural network model optimized for object recognition and compared representations at various model levels using representational similarity analysis to human functional imaging responses elicited from viewing hundreds of image stimuli. Neural network layers developed representati...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Body Regions
Biological Neural Networks
Theoretical Model
Neural Network Simulation
Structure of Cortex of Kidney
Laryngoonychocutaneous Syndrome

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.