Sep 28, 2006

A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology

The American Naturalist
John A LeskuSteven L Lima

Abstract

Among mammalian species, the time spent in the two main "architectural" states of sleep--slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep--varies greatly. Previous comparative studies of sleep architecture found that larger mammals, those with bigger brains, and those with higher absolute basal metabolic rates (BMR) tended to engage in less SWS and REM sleep. Species experiencing a greater risk of predation also exhibited less SWS and REM sleep. In all cases, however, these studies lacked a formal phylogenetic and theoretical framework and used mainly correlational analyses. Using independent contrasts and an updated data set, we extended existing approaches with path analysis to examine the integrated influence of anatomy, physiology, and ecology on sleep architecture. Path model structure was determined by nonmutually exclusive hypotheses for the function of sleep. We found that species with higher relative BMRs engage in less SWS, whereas species with larger relative brain masses engage in more REM sleep. REM sleep was the only sleep variable strongly influenced by predation risk; mammals sleeping in riskier environments engage in less REM sleep. Overall, we found support for some hypotheses for the function of sleep...Continue Reading

  • References79
  • Citations58

References

  • References79
  • Citations58

Citations

Mentioned in this Paper

Sleep, Slow-Wave
Brain
Sleep Disorders
Sleep Stages
Phylogeny
Basal Metabolic Rate
Habitat

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.

Related Papers

Evolution; International Journal of Organic Evolution
I CapelliniC L Nunn
Journal of Sleep Research
Timothy C RothSteven L Lima
Die Naturwissenschaften
Hugh Staunton
© 2020 Meta ULC. All rights reserved