Nov 1, 2017

A platform for stereological quantitative analysis of the brain-wide distribution of type-specific neurons

Scientific Reports
Chen ZhangJing Yuan

Abstract

Quantifying the distribution of specific neurons throughout the whole brain is crucial for understanding physiological actions, pathological alterations and pharmacological treatments. However, the precise cell number and density of specific neurons in the entire brain remain unknown because of a lack of suitable research tools. Here, we propose a pipeline to automatically acquire and analyse the brain-wide distribution of type-specific neurons in a mouse brain. We employed a Brain-wide Positioning System to collect high-throughput anatomical information with the co-localized cytoarchitecture of the whole brain at subcellular resolution and utilized the NeuroGPS algorithm to locate and count cells in the whole brain. We evaluated the data continuity of the 3D dataset and the accuracy of stereological cell counting in 3D. To apply this pipeline, we acquired and quantified the brain-wide distributions and somatic morphology of somatostatin-expressing neurons in transgenic mouse brains. The results indicated that this whole-brain cell counting pipeline has the potential to become a routine tool for cell type neuroscience studies.

Mentioned in this Paper

Entire Brain
Automation, Laboratory
Three-dimensional
Science of Morphology
Neurons
Tissue Specificity
Brain
Cell Count
Computer Programs and Programming
Neurosciences Research

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.