Jun 30, 2012

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity

Science
Martin JinekEmmanuelle Charpentier

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.

  • References44
  • Citations4057

Citations

Mentioned in this Paper

Study
RNA Conformation
Deoxyribonuclease I
RuvC protein, E coli
Virus
Cleaved
CRISPR-Associated Protein Complex Proteins
Endonuclease
Bacteriophages
Chimera Organism

Related Feeds

CRISPR Genome Editing & Therapy

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

Biophysics of CRISPR

This feed focuses on broad characteristics of the CRISPR system and the proteins associated with it.

Virology & CRISPR

This feed focuses on the virology of CRISPR and its use in developing CRISPR-Cas systems. Discover the latest research here.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

BioHub - Researcher Network

The Chan-Zuckerberg Biohub aims to support the fundamental research and develop the technologies that will enable physicians to cure, prevent, or manage all diseases in our childrens' lifetimes. The CZ Biohub brings together researchers from UC Berkeley, Stanford, and UCSF. Find the latest research from the CZ Biohub researcher network here.

Archaeogenetics

Recent advances in genomic sequencing has led to the discovery of new strains of Archaea and shed light on their evolutionary history. Discover the latest research on Archaeogenetics here.

CRISPRi Screens for Antibiotics

The CRISPR-Cas system is a gene editing technique that can be used for high-throughput genome-wide screens to identify modes of actions of novel antibiotics. Here is the latest research.

Bacteriophage: Phage Therapy

Phage therapy uses bacterial viruses (bacteriophages) to treat bacterial infections and is widely being recognized as an alternative to antibiotics. Here is the latest research.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.