Mar 15, 2016

A proposed rule for updating of the head direction cell reference frame following rotations in three dimensions

BioRxiv : the Preprint Server for Biology
Jonathan WilsonKate Jeffery


In the mammalian brain, allocentric (Earth-referenced) heading direction, called azimuth, is encoded by head direction (HD) cells, which fire according to the facing direction of the rat's head. If the animal is on a horizontal surface then egocentric (self-referenced) rotations of the head around the dorso-ventral axis, called yaw, correspond to changes in azimuth, and elicit appropriate updating of the HD signal. However, if the surface is sloping steeply then yaw rotations no longer map linearly to changes in azimuth. The brain could solve this problem simply by always firing according to direction on the local (sloping) surface instead; however, if the animal moves between surfaces having different compass orientations then errors would accumulate in the subsequent azimuth signal. These errors could be avoided if the HD system instead combines two updating rules: yaw rotations around the D-V axis and rotations of the D-V axis around the gravity-defined vertical axis. We show here that when rats move between vertical walls of different orientations then HD cells indeed rotate their activity by an amount corresponding to the amount of vertical-axis rotation. With modelling, we then show how this reference-frame rotation, whic...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Sinusoidal Vertical Axis Rotational Assessment
Vestibular Nucleus Structure
Vertical Axis

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.