Jan 12, 2007

A quantitative, theoretical framework for understanding mammalian sleep

Proceedings of the National Academy of Sciences of the United States of America
Van M Savage, Geoffrey B West

Abstract

Sleep is one of the most noticeable and widespread phenomena occurring in multicellular animals. Nevertheless, no consensus for a theory of its origins has emerged. In particular, no explicit, quantitative theory exists that elucidates or distinguishes between the myriad hypotheses proposed for sleep. Here, we develop a general, quantitative theory for mammalian sleep that relates many of its fundamental parameters to metabolic rate and body size. Several mechanisms suggested for the function of sleep can be placed in this framework, e.g., cellular repair of damage caused by metabolic processes as well as cortical reorganization to process sensory input. Our theory leads to predictions for sleep time, sleep cycle time, and rapid eye movement time as functions of body and brain mass, and it explains, for example, why mice sleep approximately 14 hours per day relative to the 3.5 hours per day that elephants sleep. Data for 96 species of mammals, spanning six orders of magnitude in body size, are consistent with these predictions and provide strong evidence that time scales for sleep are set by the brain's, not the whole-body, metabolic rate.

  • References35
  • Citations24

Citations

Mentioned in this Paper

Sleep, Slow-Wave
Brain
Etiology
Structure of Cortex of Kidney
Metabolic Rate
Cerebral Cortex
Elephants
Metabolism
Mass Lesion of Brain
Adrenal Cortex

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.