Apr 6, 1976

A quantitative treatment of the kinetics of the folding transition of ribonuclease A

Biochemistry
P J Hagerman, R L Baldwin

Abstract

New experimental data and a quantitative theoretical treatment are given for the kinetics of the thermal folding transition of ribonuclease A at pH 3.0. A three-species mechanism is used as a starting point for the analysis: U1 (slow) in equilibrium U2(fast) in equilibrium N, where U1 and U2 are two forms of the unfolded enzyme with markedly different rates of refolding and N is the native enzyme. This mechanism is based on certain facts established in previous studies of refolding. The kinetics of unfolding and refolding show two phases a fast phase and a slow phase, over a range of temperatures extending above the transition midpoint, Tm. The three-species mechanism can be used in this range. At higher temperatures a new much faster kinetic phase is also observed corresponding to the transient formation of a new intermediate (I). Although the general solution for a four-species mechanism is complex it is not difficult to extend the three-species analysis for the special case found here, in which the fast reaction (I in equilibrium N) is well separated from the other two reactions. At temperatures below the transition zone the slow phase of refolding becomes kinetically complex. No attempt has been made to extend the analysis ...Continue Reading

  • References18
  • Citations113

Citations

Mentioned in this Paper

Plasma Protein Binding Capacity
Alkaline Ribonuclease
Protein Conformation
Pancreatic ribonuclease
PH.3
Liver Acinus Zone 2
RNASE1
Hydrogen-Ion Concentration
Pancreatic Ribonuclease Activity
Mathematics

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.