Mar 1, 1976

A rabbit reticulocyte model for the role of hemin-controlled repressor in hypochromic anemias

The Journal of Clinical Investigation
M L Freedman, J Rosman

Abstract

Hemin allows maximal protein synthesis in intact rabbit reticulocytes and their cell-free lysate preparations by retarding the formation of a translational repressor (HCR) found in the postribosomal supernate. In order to evaluate the role of HCR in the pathogenesis of hypochromic anemias, HCR was isolated and partially purified from intact rabbit reticulocytes incubated in vitro with either 0.1 mM alpha,alpha-dipyridyl (an iron-chelating agent) or 0.1 M ethanol. Both of these agents inhibit reticulocyte protein synthesis. Hemin (50 muM) protects against the inhibition by both agents. A ferrous iron-transferrin mixture, however, protects only against alpha,alpha-dipyridyl. Both alpha,alpha-dipyridyl and ethanol inhibit heme synthesis before the time that protein synthesis is affected, while neither lowers either ATP or GSH levels. These results indicate that while both agents inhibit heme synthesis, alpha,alpha-dipyridyl does so by inducing iron deficiency while ethanol works at a non-iron-requiring step. When HCR was isolated from intact cells and assayed in the reticulocyte cell-free systems, plus and minus hemin, premature appearance of HCR was found in cells incubated in vitro with alpha,alpha-dipyridyl or ethanol. When hem...Continue Reading

  • References27
  • Citations16

References

Mentioned in this Paper

Pathogenic Aspects
Sephadex G 200
Ethanol
Pathogenesis
Transcription Repressor/Corepressor
Ethanol Measurement
Panhematin
Protoplasm
Transferrin
Chronic Disease

Related Feeds

Anemia

Anemia develops when your blood lacks enough healthy red blood cells. Anemia of inflammation (AI, also called anemia of chronic disease) is a common, typically normocytic, normochromic anemia that is caused by an underlying inflammatory disease. Here is the latest research on anemia.