A robust gene expression signature to predict proteasome inhibitor benefit in Multiple Myeloma

MedRxiv : the Preprint Server for Health Sciences
Joske UbelsJeroen de Ridder

Abstract

Many cancer drugs only benefit a subset of the patients that receive them, but are often associated with serious side effects. Predictive classification methods that can identify which patients will benefit from a specific treatment are therefore of great clinical utility. We here introduce a novel machine learning method to identify predictive gene expression signatures, based on the idea that patients who received different treatments but exhibit similar expression profiles can be used to model response to the alternative treatment. We use this method to predict proteasome inhibitor benefit in Multiple Myeloma (MM). In a dataset of 910 MM patients we identify a 14-gene expression signature that can successfully predict benefit to the proteasome inhibitor bortezomib, with a hazard ratio of 0.47 (p = 0.04) in class benefit, while in class no benefit the hazard ratio is 0.91 (p = 0.68). Importantly, we observe a similar classification performance (HR class benefit = 0.46, p = 0.04) in an independent patient cohort which was moreover measured on a different platform, demonstrating the robustness of the signature. Moreover, we find that the genes in the discovered signature are essential, as no equivalent signature can be found wh...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2021 Meta ULC. All rights reserved