Oct 8, 2013

A role for glutathione, independent of oxidative stress, in the developmental toxicity of methanol

Toxicology and Applied Pharmacology
Michelle T SiuPeter G Wells


Oxidative stress and reactive oxygen species (ROS) have been implicated in the teratogenicity of methanol (MeOH) in rodents, both in vivo and in embryo culture. We explored the ROS hypothesis further in vivo in pregnant C57BL/6J mice. Following maternal treatment with a teratogenic dose of MeOH, 4 g/kg via intraperitoneal (ip) injection on gestational day (GD) 12, there was no increase 6h later in embryonic ROS formation, measured by 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) fluorescence, despite an increase observed with the positive control ethanol (EtOH), nor was there an increase in embryonic oxidatively damaged DNA, quantified as 8-oxo-2'-deoxyguanosine (8-oxodG) formation. MeOH teratogenicity (primarily ophthalmic anomalies, cleft palate) also was not altered by pre- and post-treatment with varying doses of the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN). In contrast, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, depleted maternal hepatic and embryonic GSH, and enhanced some new anomalies (micrognathia, agnathia, short snout, fused digits, cleft lip, low set ears), but not the most common teratogenic effects of MeOH (ophthalmic an...Continue Reading

Mentioned in this Paper

Pathologic Cytolysis
Metabolic Process, Cellular
Chemke Oliver Mallek Syndrome
Neural Tube
Glucocorticoid-remediable Aldosteronism
Hydrogen Peroxide

Related Feeds

Birth Defects

Birth defects encompass structural and functional alterations that occur during embryonic or fetal development and are present since birth. The cause may be genetic, environmental or unknown and can result in physical and/or mental impairment. Here is the latest research on birth defects.