A short HBV RNA region induces RNR-R2 expression in non-cycling cells and in primary human hepatocytes

BioRxiv : the Preprint Server for Biology
Inna Ricardo-LaxYosef Shaul


Hepatitis B virus infects non-dividing cells in which dNTPs are scarce. HBV replication requires dNTPs. To cope with this constraint the virus induces the DNA damage response (DDR) pathway culminating in RNR-R2 expression and the generation of an active RNR holoenzyme, the key regulator of dNTP levels. Previously we reported that the HBx open reading frame (ORF) triggers this pathway. Unexpectedly however, we report here that the production of HBx protein is not essential. We found that a small region of 125 bases within the HBx transcript is sufficient to induce RNR-R2 expression in growth arrested HepG2 cells and in primary human hepatocytes (PHH). The observed HBx embedded regulatory element is named ERE. We demonstrate that ERE is functional as a positive strand RNA polymerase-II transcript. Remarkably, ERE is sufficient to induce the Chk1-E2F1-RNR-R2 DDR pathway, previously reported to be activated by HBV. Furthermore, we found that ERE activates ATR but not ATM in eliciting this DDR pathway in upregulating RNR-R2. These findings demonstrate the multitasking role of HBV transcripts in mediating virus-host cell interaction, a mechanism that explains how such a small genome effectively serves such a pervasive virus.

Related Concepts

Hepatitis B
Hepatitis B Virus
Regulatory Sequences, Nucleic Acid
Virus Replication
Hepatitis B virus X protein
Transcription Factor TFIIA
Open Reading Frames

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2021 Meta ULC. All rights reserved