Jul 28, 2012

A universal scaling law determines time reversibility and steady state of substitutions under selection

Theoretical Population Biology
Michael ManhartAlexandre V Morozov

Abstract

Monomorphic loci evolve through a series of substitutions on a fitness landscape. Understanding how mutation, selection, and genetic drift drive this process, and uncovering the structure of the fitness landscape from genomic data are two major goals of evolutionary theory. Population genetics models of the substitution process have traditionally focused on the weak-selection regime, which is accurately described by diffusion theory. Predictions in this regime can be considered universal in the sense that many population models exhibit equivalent behavior in the diffusion limit. However, a growing number of experimental studies suggest that strong selection plays a key role in some systems, and thus there is a need to understand universal properties of models without a priori assumptions about selection strength. Here we study time reversibility in a general substitution model of a monomorphic haploid population. We show that for any time-reversible population model, such as the Moran process, substitution rates obey an exact scaling law. For several other irreversible models, such as the simple Wright–Fisher process and its extensions, the scaling law is accurate up to selection strengths that are well outside the diffusion re...Continue Reading

  • References39
  • Citations6
  • References39
  • Citations6

Mentioned in this Paper

Genetic Drift
Genome
Moran a
Genomics
Time Studies
Mutation Abnormality
Biological Evolution
Neomalthusianism

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.