PMID: 3207698Oct 4, 1988

Acceleration of cleavage of the carbon-cobalt bond of sterically hindered alkylcobalamins by binding to apoprotein of diol dehydrase

T Toraya, A Ishida


Cleavage of the C-Co bond of sterically hindered alkylcobalamins bearing neither an adenine moiety nor functional groups, such as isobutylcobalamin, neopentylcobalamin, and cyclohexylcobalamin, was markedly accelerated by their interaction with apoprotein of diol dehydrase, although these cobalamins do not function as coenzyme. Acceleration of the conversion of alkylcobalamins to enzyme-bound hydroxocobalamin was stoichiometric and obeyed first-order reaction kinetics. These results, together with strong competitive inhibition by these alkylcobalamins with respect to adenosylcobalamin, indicate that acceleration of the C-Co bond cleavage by the apoenzyme is due to labilization of their C-Co bond by binding to the active site of the enzyme. This labilization is considered to be caused by a steric distortion of the corrin ring which is induced by specific tight interaction of the cobalamin moiety with apoprotein. The importance of such a labilizing effect for activation of the C-Co bond of adenosylcobalamin in enzymatic reactions is discussed.


May 1, 1979·Archives of Biochemistry and Biophysics·A A PoznanskajaS Fukui
Jan 5, 1977·Journal of the American Chemical Society·J F Endicott, C J Ferraudi
Nov 1, 1985·Archives of Biochemistry and Biophysics·T Toraya
Mar 10, 1971·Journal of the American Chemical Society·M K EssenbergR H Abeles
Aug 1, 1980·Archives of Biochemistry and Biophysics·T Toraya, R H Abeles


Related Concepts

Allosteric Site
Vitreous Carbon
Propanediol Dehydratase

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.