Acceleration of spleen segmentation with end-to-end deep learning method and automated pipeline

Computers in Biology and Medicine
Hyeonsoo MoonBennett A Landman

Abstract

Delineation of Computed Tomography (CT) abdominal anatomical structure, specifically spleen segmentation, is useful for not only measuring tissue volume and biomarkers but also for monitoring interventions. Recently, segmentation algorithms using deep learning have been widely used to reduce time humans spend to label CT data. However, the computerized segmentation has two major difficulties: managing intermediate results (e.g., resampled scans, 2D sliced image for deep learning), and setting up the system environments and packages for autonomous execution. To overcome these issues, we propose an automated pipeline for the abdominal spleen segmentation. This pipeline provides an end-to-end synthesized process that allows users to avoid installing any packages and to deal with the intermediate results locally. The pipeline has three major stages: pre-processing of input data, segmentation of spleen using deep learning, 3D reconstruction with the generated labels by matching the segmentation results with the original image dimensions, which can then be used later and for display or demonstration. Given the same volume scan, the approach described here takes about 50 s on average whereas the manual segmentation takes about 30 min ...Continue Reading

Citations

Apr 3, 2020·Current Hematologic Malignancy Reports·Nathan RadakovichAziz Nazha

Related Concepts

Spleen
Tomography, X-Ray Computerized Axial
Imaging, Three-Dimensional, Computer Assisted
Biological Markers
Environment
Learning
Spleen
X-Ray Computed Tomography
CT of Abdomen
Scanning

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.