May 5, 1998

Activation of the small GTPase Ral in platelets

Molecular and Cellular Biology
R M WolthuisJ L Bos

Abstract

Ral is a ubiquitously expressed Ras-like small GTPase which is abundantly present in human platelets. The biological function of Ral and the signaling pathway in which Ral is involved are largely unknown. Here we describe a novel method to measure Ral activation utilizing the Ral binding domain of the putative Ral effector RLIP76 as an activation-specific probe. With this assay we investigated the signaling pathway that leads to Ral activation in human platelets. We found that Ral is rapidly activated after stimulation with various platelet agonists, including alpha-thrombin. In contrast, the platelet antagonist prostaglandin I2 inhibited alpha-thrombin-induced Ral activation. Activation of Ral by alpha-thrombin could be inhibited by depletion of intracellular Ca2+, whereas the induction of intracellular Ca2+ resulted in the activation of Ral. Our results show that Ral can be activated by extracellular stimuli. Furthermore, we show that increased levels of intracellular Ca2+ are sufficient for Ral activation in platelets. This activation mechanism correlates with the activation mechanism of the small GTPase Rap1, a putative upstream regulator of Ral guanine nucleotide exchange factors.

Mentioned in this Paper

Extracellular
Calcium
RALBP1 wt Allele
Protoplasm
Antagonist Muscle Action
Flolan
Signal Transduction Pathways
RALBP1 protein, human
Plasma Protein Binding Capacity
ATP-Binding Cassette Transporters

About this Paper

Related Feeds

Calcium & Bioenergetics

Bioenergetic processes, including cellular respiration and photosynthesis, concern the transformation of energy by cells. Here is the latest research on the role of calcium in bioenergetics.