PMID: 204431Mar 1, 1978Paper

Adenylate kinase inhibition by adenosine 5'-monophosphate and fluoride in the determination of creatine kinase activity

Clinical Chemistry
F MeiattiniP Tarli

Abstract

The current methods for the determination of creatine kinase (EC 2.7.3.2) activity are derived from Oliver's method, in which AMP is used to decrease interference by adenylate kinase (EC 2.7.4.3). Recently, Szasz et al. and Rosano et al. described methods in which diadenosine pentaphosphate and fluoride, respectively, are used to reduce this interference. However, diadenosine pentaphosphate does not sufficiently inhibit such activity of hepatic origin, while fluoride alone can only inhibit it at concentrations at which the fluoride tends to precipitate as MgF2. Finally, Szasz et al., the Committee on Enzymes of the Scandinavian Society for Clinical Chemistry and Clinical Physiology, and the German Society for Clinical Chemistry have proposed methods in which both AMP and diadenosine pentaphosphate are used to inhibit adenylate kinase. We have found that by using low concentrations of AMP and fluoride together, we can greatly diminish this interference without significant loss of creatine kinase activity and with no precipitation of MgF2.

Related Concepts

Phosphaden
Adenylate KINASE
Macro-Creatine Kinase
Erythrocytes
False Positive Reactions
Fluorides
Phosphotransferases

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Glut1 Deficiency

Glut1 deficiency, an autosomal dominant, genetic metabolic disorder associated with a deficiency of GLUT1, the protein that transports glucose across the blood brain barrier, is characterized by mental and motor developmental delays and infantile seizures. Follow the latest research on Glut1 deficiency with this feed.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Laryngeal Neoplasms

Laryngeal Neoplasms occur in the Larynx and are typically associated with smoking and alcohol consumption. Discover the latest research on Laryngeal Neoplasms here.

Cell Atlas Along the Gut-Brain Axis

Profiling cells along the gut-brain axis at the single cell level will provide unique information for each cell type, a three-dimensional map of how cell types work together to form tissues, and insights into how changes in the map underlie health and disease of the GI system and its crosstalk with the brain. Disocver the latest research on single cell analysis of the gut-brain axis here.