PMID: 41518Aug 15, 1979

Adenylate metabolism in the heart. Regulatory properties of rabbit cardiac adenylate deaminase

The Biochemical Journal
R BarsacchiAntonio Raggi

Abstract

The kinetic properties of a 300-fold purified cardiac AMP deaminase were studied and compared with those of the corresponding enzyme from skeletal muscle. The heart enzyme is activated by ATP and less efficiently by ADP, and is inhibited by Pi, phosphocreatine and GTP. ATP, even at micromolar concentrations, is able to abolish the effects of the inhibitors. The affinity of the enzyme for AMP is low in the absence of activators (Km 3.1 mM), but, in the presence of ATP, becomes as high as that of skeletal-muscle AMP deaminase (Km 0.4 mM). The maximal activation by ATP is observed at alkaline pH (pH 7.5-8.0). Under the same conditions ATP is maximally inhibitory for skeletal-muscle enzyme. These results suggest that AMP deaminase in the heart is always in the activated state, whereas in skeletal muscle the enzyme is active only during exhaustive contractions.

Citations

Aug 18, 2004·The International Journal of Biochemistry & Cell Biology·Catia Barsotti, Piero L Ipata
Oct 1, 1991·Biochemical Medicine and Metabolic Biology·G Nowak, K Kaletha
Nov 1, 1982·Acta Physiologica Scandinavica·B B FredholmM Wennmalm

Related Concepts

Magnesium ADP
Adenosine Triphosphate, Chromium Ammonium Salt
AMP Deaminase
Enzyme Activation
Hydrogen-Ion Concentration
Magnesium
Muscle
Myocardium
Nucleotide Deaminases

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.