Dec 27, 2011

Adult neural progenitor cells reactivate superbursting in mature neural networks

Experimental Neurology
Crystal L StephensBrandi K Ormerod

Abstract

Behavioral recovery in animal models of human CNS syndromes suggests that transplanted stem cell derivatives can augment damaged neural networks but the mechanisms behind potentiated recovery remain elusive. Here we use microelectrode array (MEA) technology to document neural activity and network integration as rat primary neurons and rat hippocampal neural progenitor cells (NPCs) differentiate and mature. The natural transition from neuroblast to functional excitatory neuron consists of intermediate phases of differentiation characterized by coupled activity. High-frequency network-wide bursting or "superbursting" is a hallmark of early plasticity that is ultimately refined into mature stable neural network activity. Microelectrode array (MEA)-plated neurons transition through this stage of coupled superbursting before establishing mature neuronal phenotypes in vitro. When plated alone, adult rat hippocampal NPC-derived neurons fail to establish the synchronized bursting activity that neurons in primary and embryonic stem cell-derived cultures readily form. However, adult rat hippocampal NPCs evoke re-emergent superbursting in electrophysiologically mature rat primary neural cultures. Developmental superbursting is thought to ...Continue Reading

Mentioned in this Paper

Embryo
Neuro-Oncological Ventral Antigen 2
Vesicular Glutamate Transport Protein 1
Biological Neural Networks
Microelectrodes
TSPAN33 gene
Transfection
Derivatives
Glial Fibrillary Acidic Protein
Coculture Techniques

Related Feeds

Autoimmune Polyendocrine Syndromes

This feed focuses on a rare genetic condition called Autoimmune Polyendocrine Syndromes, which are characterized by autoantibodies against multiple endocrine organs. This can lead to Type I Diabetes.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

Astrocytes

Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.