Allelic specificity of Ube3a expression in the mouse brain during postnatal development
Abstract
Genetic alterations of the maternal UBE3A allele result in Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, lack of speech, and difficulty with movement and balance. The combined effects of maternal UBE3A mutation and cell type-specific epigenetic silencing of paternal UBE3A are hypothesized to result in a complete loss of functional UBE3A protein in neurons. However, the allelic specificity of UBE3A expression in neurons and other cell types in the brain has yet to be characterized throughout development, including the early postnatal period when AS phenotypes emerge. Here we define maternal and paternal allele-specific Ube3a protein expression throughout postnatal brain development in the mouse, a species that exhibits orthologous epigenetic silencing of paternal Ube3a in neurons and AS-like behavioral phenotypes subsequent to maternal Ube3a deletion. We find that neurons downregulate paternal Ube3a protein expression as they mature and, with the exception of neurons born from postnatal stem cell niches, do not express detectable paternal Ube3a beyond the first postnatal week. By contrast, neurons express maternal Ube3a throughout postnatal development, during which time local...Continue Reading
References
The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53
Citations
Model mice for 15q11-13 duplication syndrome exhibit late-onset obesity and altered lipid metabolism
Related Concepts
Related Feeds
Angelman Syndrome
Angelman syndrome is a neurogenetic imprinting disorder caused by loss of the maternally inherited UBE3A gene and is characterized by generalized epilepsy, limited expressive speech, sleep dysfunction, and movement disorders. Here is the latest research.
Astrocytes
Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.