May 18, 2015

An accurate genetic clock

BioRxiv : the Preprint Server for Biology
David H Hamilton

Abstract

Molecular clocks give \``Time to most recent common ancestor'' TMRCA} of genetic trees. By Watson-Galton most lineages terminate, with a few overrepresented singular lineages generated by W. Hamilton's \``kin selection''. Applying current methods to this non-uniform branching produces greatly exaggerated TMRCA. We introduce an inhomogenous stochastic process which detects singular lineages by asymmetries, whose reduction gives true TMRCA. This implies a new method for computing mutation rates. Despite low rates similar to mitosis data, reduction implies younger TMRCA, with smaller errors. We establish accuracy by a comparison across a wide range of time, indeed this is only clock giving consistent results for both short and long term times. In particular we show that the dominant European y-haplotypes R1a1a & R1b1a2, expand from c3700BC, not reaching Anatolia before c3300BC. While this contradicts current clocks which date R1b1a2 to either the Neolithic Near East$ or Paleo-Europe, our dates support recent genetic analysis of ancient skeletons by Reich.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Trees (plant)
Hamilton Rating Scale for Depression
Genetic Analysis
Genetic Screening Method
KIN gene
Androderm
Thoracic Skeleton
Skeleton
Analysis
Branching (Qualifier Value)

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.